Numerical Implementation Of Time Dependent Density Functional Theory For Extended Systems In Extreme Environments

Author:
Publisher:
ISBN: OCLC:925461621
Size: 18.42 MB
Format: PDF, Kindle
View: 18

In recent years, DFT-MD has been shown to be a useful computational tool for exploring the properties of WDM. These calculations achieve excellent agreement with shock compression experiments, which probe the thermodynamic parameters of the Hugoniot state. New X-ray Thomson Scattering diagnostics promise to deliver independent measurements of electronic density and temperature, as well as structural information in shocked systems. However, they require the development of new levels of theory for computing the associated observables within a DFT framework. The experimentally observable x-ray scattering cross section is related to the electronic density-density response function, which is obtainable using TDDFT - a formally exact extension of conventional DFT that describes electron dynamics and excited states. In order to develop a capability for modeling XRTS data and, more generally, to establish a predictive capability for rst principles simulations of matter in extreme conditions, real-time TDDFT with Ehrenfest dynamics has been implemented in an existing PAW code for DFT-MD calculations. The purpose of this report is to record implementation details and benchmarks as the project advances from software development to delivering novel scienti c results. Results range from tests that establish the accuracy, e ciency, and scalability of our implementation, to calculations that are veri ed against accepted results in the literature. Aside from the primary XRTS goal, we identify other more general areas where this new capability will be useful, including stopping power calculations and electron-ion equilibration.

Computational Science Iccs 2001

Author: Vassil N. Alexandrov
Publisher: Springer
ISBN: 9783540455455
Size: 15.50 MB
Format: PDF, Kindle
View: 67

LNCS volumes 2073 and 2074 contain the proceedings of the International Conference on Computational Science, ICCS 2001, held in San Francisco, California, May 27 -31, 2001. The two volumes consist of more than 230 contributed and invited papers that reflect the aims of the conference to bring together researchers and scientists from mathematics and computer science as basic computing disciplines, researchers from various application areas who are pioneering advanced application of computational methods to sciences such as physics, chemistry, life sciences, and engineering, arts and humanitarian fields, along with software developers and vendors, to discuss problems and solutions in the area, to identify new issues, and to shape future directions for research, as well as to help industrial users apply various advanced computational techniques.

Chemical Modelling

Author: Michael Springborg
Publisher: Royal Society of Chemistry
ISBN: 9781849732789
Size: 17.14 MB
Format: PDF, Mobi
View: 48

Chemical Modelling: Applications and Theory comprises critical literature reviews of all aspects of molecular modelling. Molecular modelling in this context refers to modelliing the structure, properties and reactions of atoms, molecules and materials. Each chapter provides a selective review of recent literature, incorporating sufficient historical perspective for the non-specialist to gain an understanding. With chemical modelling covering such a wide range of subjects, this Specialist Periodical Report serves as the first port of call to any chemist, biochemist, materials scientist or molecular physicist needing to acquaint themselves with major developments in the area.

Atoms Molecules And Optical Physics 1

Author: Ingolf Volker Hertel
Publisher: Springer
ISBN: 9783642543227
Size: 15.39 MB
Format: PDF
View: 38

This is the first volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 1 provides the canonical knowledge in atomic physics together with basics of modern spectroscopy. Starting from the fundamentals of quantum physics, the reader is familiarized in well structured chapters step by step with the most important phenomena, models and measuring techniques. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.

Computational Chemistry Methodology In Structural Biology And Materials Sciences

Author: Tanmoy Chakraborty
Publisher: CRC Press
ISBN: 9781351800365
Size: 16.61 MB
Format: PDF, Mobi
View: 32

Computational Chemistry Methodology in Structural Biology and Materials Sciences provides a selection of new research in theoretical and experimental chemistry, focusing on topics in the materials science and biological activity. Part 1, on Computational Chemistry Methodology in Biological Activity, of the book emphasizes presents new developments in the domain of theoretical and computational chemistry and its applications to bioactive molecules. It looks at various aspects of density functional theory and other issues. Part 2, on Computational Chemistry Methodology in Materials Science, presents informative new research on computational chemistry as applied to materials science. The wide range of topics regarding the application of theoretical and experimental chemistry and materials science and biological domain will be valuable in the context of addressing contemporary research problems.

Frontiers And Challenges In Warm Dense Matter

Author: Frank Graziani
Publisher: Springer Science & Business
ISBN: 9783319049120
Size: 14.82 MB
Format: PDF
View: 67

Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent Light Source (LCLS). Warm Dense Matter is also ubiquitous in planetary science and astrophysics, particularly with respect to unresolved questions concerning the structure and age of the gas giants, the nature of exosolar planets, and the cosmochronology of white dwarf stars. In this book we explore established and promising approaches to the modeling of WDM, foundational issues concerning the correct theoretical description of WDM, and the challenging practical issues of numerically modeling strongly coupled systems with many degrees of freedom.