Probability Theory

Author: Achim Klenke
Publisher: Springer Science & Business Media
ISBN: 9781447153610
Size: 18.82 MB
Format: PDF, ePub
View: 54

This second edition of the popular textbook contains a comprehensive course in modern probability theory, covering a wide variety of topics which are not usually found in introductory textbooks, including: • limit theorems for sums of random variables • martingales • percolation • Markov chains and electrical networks • construction of stochastic processes • Poisson point process and infinite divisibility • large deviation principles and statistical physics • Brownian motion • stochastic integral and stochastic differential equations. The theory is developed rigorously and in a self-contained way, with the chapters on measure theory interlaced with the probabilistic chapters in order to display the power of the abstract concepts in probability theory. This second edition has been carefully extended and includes many new features. It contains updated figures (over 50), computer simulations and some difficult proofs have been made more accessible. A wealth of examples and more than 270 exercises as well as biographic details of key mathematicians support and enliven the presentation. It will be of use to students and researchers in mathematics and statistics in physics, computer science, economics and biology.

Probability Theory

Author: Achim Klenke
Publisher: Springer Science & Business Media
ISBN: 9781447153610
Size: 13.21 MB
Format: PDF, Kindle
View: 58

This second edition of the popular textbook contains a comprehensive course in modern probability theory, covering a wide variety of topics which are not usually found in introductory textbooks, including: • limit theorems for sums of random variables • martingales • percolation • Markov chains and electrical networks • construction of stochastic processes • Poisson point process and infinite divisibility • large deviation principles and statistical physics • Brownian motion • stochastic integral and stochastic differential equations. The theory is developed rigorously and in a self-contained way, with the chapters on measure theory interlaced with the probabilistic chapters in order to display the power of the abstract concepts in probability theory. This second edition has been carefully extended and includes many new features. It contains updated figures (over 50), computer simulations and some difficult proofs have been made more accessible. A wealth of examples and more than 270 exercises as well as biographic details of key mathematicians support and enliven the presentation. It will be of use to students and researchers in mathematics and statistics in physics, computer science, economics and biology.

A Basic Course In Probability Theory

Author: Rabi Bhattacharya
Publisher: Springer Science & Business Media
ISBN: 9780387719382
Size: 13.90 MB
Format: PDF, Kindle
View: 97

Introductory Probability is a pleasure to read and provides a fine answer to the question: How do you construct Brownian motion from scratch, given that you are a competent analyst? There are at least two ways to develop probability theory. The more familiar path is to treat it as its own discipline, and work from intuitive examples such as coin flips and conundrums such as the Monty Hall problem. An alternative is to first develop measure theory and analysis, and then add interpretation. Bhattacharya and Waymire take the second path.

Theory Of Probability And Random Processes

Author: Leonid Koralov
Publisher: Springer Science & Business Media
ISBN: 9783540688297
Size: 12.21 MB
Format: PDF, Mobi
View: 82

A one-year course in probability theory and the theory of random processes, taught at Princeton University to undergraduate and graduate students, forms the core of this book. It provides a comprehensive and self-contained exposition of classical probability theory and the theory of random processes. The book includes detailed discussion of Lebesgue integration, Markov chains, random walks, laws of large numbers, limit theorems, and their relation to Renormalization Group theory. It also includes the theory of stationary random processes, martingales, generalized random processes, and Brownian motion.

The Theory Of Probability

Author: Santosh S. Venkatesh
Publisher: Cambridge University Press
ISBN: 9781107024472
Size: 11.10 MB
Format: PDF, Kindle
View: 48

From classical foundations to modern theory, this comprehensive guide to probability interweaves mathematical proofs, historical context and detailed illustrative applications.

Probability And Stochastics

Author: Erhan Çınlar
Publisher: Springer Science & Business Media
ISBN: 0387878599
Size: 16.74 MB
Format: PDF, Mobi
View: 32

This text is an introduction to the modern theory and applications of probability and stochastics. The style and coverage is geared towards the theory of stochastic processes, but with some attention to the applications. In many instances the gist of the problem is introduced in practical, everyday language and then is made precise in mathematical form. The first four chapters are on probability theory: measure and integration, probability spaces, conditional expectations, and the classical limit theorems. There follows chapters on martingales, Poisson random measures, Levy Processes, Brownian motion, and Markov Processes. Special attention is paid to Poisson random measures and their roles in regulating the excursions of Brownian motion and the jumps of Levy and Markov processes. Each chapter has a large number of varied examples and exercises. The book is based on the author’s lecture notes in courses offered over the years at Princeton University. These courses attracted graduate students from engineering, economics, physics, computer sciences, and mathematics. Erhan Cinlar has received many awards for excellence in teaching, including the President’s Award for Distinguished Teaching at Princeton University. His research interests include theories of Markov processes, point processes, stochastic calculus, and stochastic flows. The book is full of insights and observations that only a lifetime researcher in probability can have, all told in a lucid yet precise style.

A First Look At Rigorous Probability Theory

Author: Jeffrey S. Rosenthal
Publisher: World Scientific
ISBN: 9810243227
Size: 14.64 MB
Format: PDF, ePub, Mobi
View: 90

This textbook is an introduction to rigorous probability theory using measure theory. It provides rigorous, complete proofs of all the essential introductory mathematical results of probability theory and measure theory. More advanced or specialized areas are entirely omitted or only hinted at. For example, the text includes a complete proof of the classical central limit theorem, including the necessary continuity theorem for characteristic functions, but the more general Lindeberg central limit theorem is only outlined and is not proved. Similarly, all necessary facts from measure theory are proved before they are used, but more abstract or advanced measure theory results are not included. Furthermore, measure theory is discussed as much as possible purely in terms of probability, as opposed to being treated as a separate subject which must be mastered before probability theory can be understood.