Probability Theory

Author: Achim Klenke
Publisher: Springer Science & Business Media
ISBN: 9781447153610
Size: 18.92 MB
Format: PDF
View: 46

This second edition of the popular textbook contains a comprehensive course in modern probability theory, covering a wide variety of topics which are not usually found in introductory textbooks, including: • limit theorems for sums of random variables • martingales • percolation • Markov chains and electrical networks • construction of stochastic processes • Poisson point process and infinite divisibility • large deviation principles and statistical physics • Brownian motion • stochastic integral and stochastic differential equations. The theory is developed rigorously and in a self-contained way, with the chapters on measure theory interlaced with the probabilistic chapters in order to display the power of the abstract concepts in probability theory. This second edition has been carefully extended and includes many new features. It contains updated figures (over 50), computer simulations and some difficult proofs have been made more accessible. A wealth of examples and more than 270 exercises as well as biographic details of key mathematicians support and enliven the presentation. It will be of use to students and researchers in mathematics and statistics in physics, computer science, economics and biology.

Discrete Probability Models And Methods

Author: Pierre Brémaud
Publisher: Springer
ISBN: 9783319434766
Size: 14.14 MB
Format: PDF, ePub, Mobi
View: 95

The emphasis in this book is placed on general models (Markov chains, random fields, random graphs), universal methods (the probabilistic method, the coupling method, the Stein-Chen method, martingale methods, the method of types) and versatile tools (Chernoff's bound, Hoeffding's inequality, Holley's inequality) whose domain of application extends far beyond the present text. Although the examples treated in the book relate to the possible applications, in the communication and computing sciences, in operations research and in physics, this book is in the first instance concerned with theory. The level of the book is that of a beginning graduate course. It is self-contained, the prerequisites consisting merely of basic calculus (series) and basic linear algebra (matrices). The reader is not assumed to be trained in probability since the first chapters give in considerable detail the background necessary to understand the rest of the book.

Wahrscheinlichkeitstheorie Und Stochastische Prozesse

Author: Michael Mürmann
Publisher: Springer-Verlag
ISBN: 9783642381607
Size: 11.93 MB
Format: PDF
View: 13

Dieses Lehrbuch beschäftigt sich mit den zentralen Gebieten einer maßtheoretisch orientierten Wahrscheinlichkeitstheorie im Umfang einer zweisemestrigen Vorlesung. Nach den Grundlagen werden Grenzwertsätze und schwache Konvergenz behandelt. Es folgt die Darstellung und Betrachtung der stochastischen Abhängigkeit durch die bedingte Erwartung, die mit der Radon-Nikodym-Ableitung realisiert wird. Sie wird angewandt auf die Theorie der stochastischen Prozesse, die nach der allgemeinen Konstruktion aus der Untersuchung von Martingalen und Markov-Prozessen besteht. Neu in einem Lehrbuch über allgemeine Wahrscheinlichkeitstheorie ist eine Einführung in die stochastische Analysis von Semimartingalen auf der Grundlage einer geeigneten Stetigkeitsbedingung mit Anwendungen auf die Theorie der Finanzmärkte. Das Buch enthält zahlreiche Übungen, teilweise mit Lösungen. Neben der Theorie vertiefen Anmerkungen, besonders zu mathematischen Modellen für Phänomene der Realität, das Verständnis.​

A First Course In Probability And Markov Chains

Author: Giuseppe Modica
Publisher: John Wiley & Sons
ISBN: 9781118477748
Size: 20.63 MB
Format: PDF, ePub
View: 63

Provides an introduction to basic structures of probability with a view towards applications in information technology A First Course in Probability and Markov Chains presents an introduction to the basic elements in probability and focuses on two main areas. The first part explores notions and structures in probability, including combinatorics, probability measures, probability distributions, conditional probability, inclusion-exclusion formulas, random variables, dispersion indexes, independent random variables as well as weak and strong laws of large numbers and central limit theorem. In the second part of the book, focus is given to Discrete Time Discrete Markov Chains which is addressed together with an introduction to Poisson processes and Continuous Time Discrete Markov Chains. This book also looks at making use of measure theory notations that unify all the presentation, in particular avoiding the separate treatment of continuous and discrete distributions. A First Course in Probability and Markov Chains: Presents the basic elements of probability. Explores elementary probability with combinatorics, uniform probability, the inclusion-exclusion principle, independence and convergence of random variables. Features applications of Law of Large Numbers. Introduces Bernoulli and Poisson processes as well as discrete and continuous time Markov Chains with discrete states. Includes illustrations and examples throughout, along with solutions to problems featured in this book. The authors present a unified and comprehensive overview of probability and Markov Chains aimed at educating engineers working with probability and statistics as well as advanced undergraduate students in sciences and engineering with a basic background in mathematical analysis and linear algebra.

Wahrscheinlichkeitstheorie

Author: Achim Klenke
Publisher: Springer-Verlag
ISBN: 9783642360183
Size: 15.94 MB
Format: PDF, ePub
View: 64

Seit seinem Erscheinen hat sich das Buch umgehend als Standardwerk für eine umfassende und moderne Einführung in die Wahrscheinlichkeitstheorie und ihre maßtheoretischen Grundlagen etabliert. Themenschwerpunkte sind: Maß- und Integrationstheorie, Grenzwertsätze für Summen von Zufallsvariablen (Gesetze der Großen Zahl, Zentraler Grenzwertsatz, Ergodensätze, Gesetz vom iterierten Logarithmus, Invarianzprinzipien, unbegrenzt teilbare Verteilungen), Martingale, Perkolation, Markovketten und elektrische Netzwerke, Konstruktion stochastischer Prozesse, Poisson'scher Punktprozess, Brown'sche Bewegung, stochastisches Integral und stochastische Differentialgleichungen. Bei der Bearbeitung der Neuauflage wurde viel Wert auf eine noch zugänglichere didaktische Aufbereitung des Textes gelegt, und es wurden viele neue Abbildungen sowie Textergänzungen hinzugefügt.

Financial Statistics And Mathematical Finance

Author: Ansgar Steland
Publisher: John Wiley & Sons
ISBN: 9781118316566
Size: 11.14 MB
Format: PDF, Kindle
View: 17

Mathematical finance has grown into a huge area of research which requires a lot of care and a large number of sophisticated mathematical tools. Mathematically rigorous and yet accessible to advanced level practitioners and mathematicians alike, it considers various aspects of the application of statistical methods in finance and illustrates some of the many ways that statistical tools are used in financial applications. Financial Statistics and Mathematical Finance: Provides an introduction to the basics of financial statistics and mathematical finance. Explains the use and importance of statistical methods in econometrics and financial engineering. Illustrates the importance of derivatives and calculus to aid understanding in methods and results. Looks at advanced topics such as martingale theory, stochastic processes and stochastic integration. Features examples throughout to illustrate applications in mathematical and statistical finance. Is supported by an accompanying website featuring R code and data sets. Financial Statistics and Mathematical Finance introduces the financial methodology and the relevant mathematical tools in a style that is both mathematically rigorous and yet accessible to advanced level practitioners and mathematicians alike, both graduate students and researchers in statistics, finance, econometrics and business administration will benefit from this book.

Numerical Approximations Of Stochastic Differential Equations With Non Globally Lipschitz Continuous Coefficients

Author: Martin Hutzenthaler
Publisher: American Mathematical Soc.
ISBN: 9781470409845
Size: 20.20 MB
Format: PDF, ePub, Docs
View: 18

Many stochastic differential equations (SDEs) in the literature have a superlinearly growing nonlinearity in their drift or diffusion coefficient. Unfortunately, moments of the computationally efficient Euler-Maruyama approximation method diverge for these SDEs in finite time. This article develops a general theory based on rare events for studying integrability properties such as moment bounds for discrete-time stochastic processes. Using this approach, the authors establish moment bounds for fully and partially drift-implicit Euler methods and for a class of new explicit approximation methods which require only a few more arithmetical operations than the Euler-Maruyama method. These moment bounds are then used to prove strong convergence of the proposed schemes. Finally, the authors illustrate their results for several SDEs from finance, physics, biology and chemistry.