Probabilistic Robotics

Author: Sebastian Thrun
Publisher: MIT Press
ISBN: 9780262303804
Size: 14.48 MB
Format: PDF, Docs
View: 83

Probabilistic robotics is a new and growing area in robotics, concerned with perception and control in the face of uncertainty. Building on the field of mathematical statistics, probabilistic robotics endows robots with a new level of robustness in real-world situations. This book introduces the reader to a wealth of techniques and algorithms in the field. All algorithms are based on a single overarching mathematical foundation. Each chapter provides example implementations in pseudo code, detailed mathematical derivations, discussions from a practitioner's perspective, and extensive lists of exercises and class projects. The book's Web site, www.probabilistic-robotics.org, has additional material. The book is relevant for anyone involved in robotic software development and scientific research. It will also be of interest to applied statisticians and engineers dealing with real-world sensor data.

Probabilistic Approaches To Robotic Perception

Author: João Filipe Ferreira
Publisher: Springer
ISBN: 9783319020068
Size: 15.49 MB
Format: PDF
View: 27

This book tries to address the following questions: How should the uncertainty and incompleteness inherent to sensing the environment be represented and modelled in a way that will increase the autonomy of a robot? How should a robotic system perceive, infer, decide and act efficiently? These are two of the challenging questions robotics community and robotic researchers have been facing. The development of robotic domain by the 1980s spurred the convergence of automation to autonomy, and the field of robotics has consequently converged towards the field of artificial intelligence (AI). Since the end of that decade, the general public’s imagination has been stimulated by high expectations on autonomy, where AI and robotics try to solve difficult cognitive problems through algorithms developed from either philosophical and anthropological conjectures or incomplete notions of cognitive reasoning. Many of these developments do not unveil even a few of the processes through which biological organisms solve these same problems with little energy and computing resources. The tangible results of this research tendency were many robotic devices demonstrating good performance, but only under well-defined and constrained environments. The adaptability to different and more complex scenarios was very limited. In this book, the application of Bayesian models and approaches are described in order to develop artificial cognitive systems that carry out complex tasks in real world environments, spurring the design of autonomous, intelligent and adaptive artificial systems, inherently dealing with uncertainty and the “irreducible incompleteness of models”.

Probabilistic Algorithms In Robotics

Author: Sebastian Thrun
Publisher:
ISBN: OCLC:45166541
Size: 12.48 MB
Format: PDF, ePub
View: 47

Abstract: "This article describes a methodology for programming robots known as probabilistic robotics. The probabilistic paradigm pays tribute to the inherent uncertainty in robot perception, relying on explicit representations of uncertainty when determining what to do. This article surveys some of the progress in the field, using in-depth examples to illustrate some of the nuts and bolts of the basic approach. Our central conjecture is that the probabilistic approach to robotics scales better to complex real-world applications than approaches that ignore a robot's uncertainty."

Robotic Navigation And Mapping With Radar

Author: Martin Adams
Publisher: Artech House
ISBN: 9781608074822
Size: 13.78 MB
Format: PDF, Docs
View: 14

Focusing on autonomous robotic applications, this cutting-edge resource offer you a practical treatment of short-range radar processing for reliable object detection at the ground level. This unique book demonstrates probabilistic radar models and detection algorithms specifically for robotic land vehicles. It examines grid based robotic mapping with radar based on measurement likelihood estimation. You find detailed coverage of simultaneous localization and Map Building (SLAM) – an area referred to as the "Holy Grail" of autonomous robotic research. The book derives an extended Kalman Filter SLAM algorithm which exploits the penetrating ability of radar. This algorithm allows for the observation of visually occluded objects, as well as the usual directly observed objects, which contributes to a robot's position and the map state update. Moreover, you discover how the Random Finite Set (RFS) provides a more appropriate approach for representing radar based maps than conventional frameworks.

Spatial Temporal Patterns For Action Oriented Perception In Roving Robots

Author: Paolo Arena
Publisher: Springer Science & Business Media
ISBN: 9783540884644
Size: 16.93 MB
Format: PDF
View: 63

The basic principles guiding sensing, perception and action in bio systems seem to rely on highly organised spatial-temporal dynamics. In fact, all biological senses, (visual, hearing, tactile, etc.) process signals coming from different parts distributed in space and also show a complex time evolution. As an example, mammalian retina performs a parallel representation of the visual world embodied into layers, each of which r- resents a particular detail of the scene. These results clearly state that visual perception starts at the level of the retina, and is not related uniquely to the higher brain centres. Although vision remains the most useful sense guiding usual actions, the other senses, ?rst of all hearing but also touch, become essential particularly in cluttered conditions, where visual percepts are somehow obscured by environment conditions. Ef?cient use of hearing can be learnt from acoustic perception in animals/insects, like crickets, that use this ancient sense more than all the others, to perform a vital function, like mating.