Measure Integral Derivative

Author: Sergei Ovchinnikov
Publisher: Springer Science & Business Media
ISBN: 9781461471967
Size: 17.58 MB
Format: PDF
View: 21

This classroom-tested text is intended for a one-semester course in Lebesgue’s theory. With over 180 exercises, the text takes an elementary approach, making it easily accessible to both upper-undergraduate- and lower-graduate-level students. The three main topics presented are measure, integration, and differentiation, and the only prerequisite is a course in elementary real analysis. In order to keep the book self-contained, an introductory chapter is included with the intent to fill the gap between what the student may have learned before and what is required to fully understand the consequent text. Proofs of difficult results, such as the differentiability property of functions of bounded variations, are dissected into small steps in order to be accessible to students. With the exception of a few simple statements, all results are proven in the text. The presentation is elementary, where σ-algebras are not used in the text on measure theory and Dini’s derivatives are not used in the chapter on differentiation. However, all the main results of Lebesgue’s theory are found in the book. http://online.sfsu.edu/sergei/MID.htm

Integral Measure And Derivative

Author: G. E. Shilov
Publisher: Courier Corporation
ISBN: 9780486165615
Size: 10.12 MB
Format: PDF
View: 84

This treatment examines the general theory of the integral, Lebesque integral in n-space, the Riemann-Stieltjes integral, and more. "The exposition is fresh and sophisticated, and will engage the interest of accomplished mathematicians." — Sci-Tech Book News. 1966 edition.

The Extended Stochastic Integral In Linear Spaces With Differentiable Measures And Related Topics

Author: Nicolai Victorovich Norin
Publisher: World Scientific
ISBN: 9810225687
Size: 17.51 MB
Format: PDF, ePub, Docs
View: 67

This volume discusses the extended stochastic integral (ESI) (or Skorokhod-Hitsuda Integral) and its relation to the logarithmic derivative of differentiable measure along the vector or operator field. In addition, the theory of surface measures and the theory of heat potentials in infinite-dimensional spaces are discussed. These theories are closely related to ESI.It starts with an account of classic stochastic analysis in the Wiener spaces; and then discusses in detail the ESI for the Wiener measure including properties of this integral understood as a process. Moreover, the ESI with a nonrandom kernel is investigated.Some chapters are devoted to the definition and the investigation of properties of the ESI for Gaussian and differentiable measures.Surface measures in Banach spaces and heat potentials theory in Hilbert space are also discussed.

Measure Integral And Probability

Author: Marek Capinski
Publisher: Springer Science & Business Media
ISBN: 1852337818
Size: 15.61 MB
Format: PDF
View: 56

Measure, Integral and Probability is a gentle introduction that makes measure and integration theory accessible to the average third-year undergraduate student. The ideas are developed at an easy pace in a form that is suitable for self-study, with an emphasis on clear explanations and concrete examples rather than abstract theory. For this second edition, the text has been thoroughly revised and expanded. New features include: · a substantial new chapter, featuring a constructive proof of the Radon-Nikodym theorem, an analysis of the structure of Lebesgue-Stieltjes measures, the Hahn-Jordan decomposition, and a brief introduction to martingales · key aspects of financial modelling, including the Black-Scholes formula, discussed briefly from a measure-theoretical perspective to help the reader understand the underlying mathematical framework. In addition, further exercises and examples are provided to encourage the reader to become directly involved with the material.

Real Analysis

Author: J Yeh
Publisher: World Scientific Publishing Company
ISBN: 9789814578561
Size: 19.27 MB
Format: PDF, ePub, Mobi
View: 54

This book presents a unified treatise of the theory of measure and integration. In the setting of a general measure space, every concept is defined precisely and every theorem is presented with a clear and complete proof with all the relevant details. Counter-examples are provided to show that certain conditions in the hypothesis of a theorem cannot be simply dropped. The dependence of a theorem on earlier theorems is explicitly indicated in the proof, not only to facilitate reading but also to delineate the structure of the theory. The precision and clarity of presentation make the book an ideal textbook for a graduate course in real analysis while the wealth of topics treated also make the book a valuable reference work for mathematicians. The book is also very helpful to graduate students in statistics and electrical engineering, two disciplines that apply measure theory.

Real Analysis Measures Integrals And Applications

Author: Boris Makarov
Publisher: Springer Science & Business Media
ISBN: 9781447151227
Size: 10.74 MB
Format: PDF, ePub, Mobi
View: 72

Real Analysis: Measures, Integrals and Applications is devoted to the basics of integration theory and its related topics. The main emphasis is made on the properties of the Lebesgue integral and various applications both classical and those rarely covered in literature. This book provides a detailed introduction to Lebesgue measure and integration as well as the classical results concerning integrals of multivariable functions. It examines the concept of the Hausdorff measure, the properties of the area on smooth and Lipschitz surfaces, the divergence formula, and Laplace's method for finding the asymptotic behavior of integrals. The general theory is then applied to harmonic analysis, geometry, and topology. Preliminaries are provided on probability theory, including the study of the Rademacher functions as a sequence of independent random variables. The book contains more than 600 examples and exercises. The reader who has mastered the first third of the book will be able to study other areas of mathematics that use integration, such as probability theory, statistics, functional analysis, partial probability theory, statistics, functional analysis, partial differential equations and others. Real Analysis: Measures, Integrals and Applications is intended for advanced undergraduate and graduate students in mathematics and physics. It assumes that the reader is familiar with basic linear algebra and differential calculus of functions of several variables.