Introduction To Plasma Physics And Controlled Fusion

Author: Francis F. Chen
Publisher: Springer
ISBN: 9783319223094
Size: 16.18 MB
Format: PDF, Docs
View: 72

This complete introduction to plasma physics and controlled fusion by one of the pioneering scientists in this expanding field offers both a simple and intuitive discussion of the basic concepts of this subject and an insight into the challenging problems of current research. In a wholly lucid manner the work covers single-particle motions, fluid equations for plasmas, wave motions, diffusion and resistivity, Landau damping, plasma instabilities and nonlinear problems. For students, this outstanding text offers a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly. This revised edition contains new material on kinetic effects, including Bernstein waves and the plasma dispersion function, and on nonlinear wave equations and solitons. For the third edition, updates was made throughout each existing chapter, and two new chapters were added; Ch 9 on “Special Plasmas” and Ch 10 on Plasma Applications (including Atmospheric Plasmas).

Controlled Fusion And Plasma Physics

Author: Kenro Miyamoto
Publisher: CRC Press
ISBN: 1584887095
Size: 18.65 MB
Format: PDF, ePub, Mobi
View: 19

Resulting from ongoing, international research into fusion processes, the International Tokamak Experimental Reactor (ITER) is a major step in the quest for a new energy source.The first graduate-level text to cover the details of ITER, Controlled Fusion and Plasma Physics introduces various aspects and issues of recent fusion research activities through the shortest access path. The distinguished author breaks down the topic by first dealing with fusion and then concentrating on the more complex subject of plasma physics. The book begins with the basics of controlled fusion research, followed by discussions on tokamaks, reversed field pinch (RFP), stellarators, and mirrors. The text then explores ideal magnetohydrodynamic (MHD) instabilities, resistive instabilities, neoclassical tearing mode, resistive wall mode, the Boltzmann equation, the Vlasov equation, and Landau damping. After covering dielectric tensors of cold and hot plasmas, the author discusses the physical mechanisms of wave heating and noninductive current drive. The book concludes with an examination of the challenging issues of plasma transport by turbulence, such as magnetic fluctuation and zonal flow. Controlled Fusion and Plasma Physics clearly and thoroughly promotes intuitive understanding of the developments of the principal fusion programs and the relevant fundamental and advanced plasma physics associated with each program.

Introduction To Plasma Physics

Author: Francis F. Chen
Publisher: Springer Science & Business Media
ISBN: 9781475704594
Size: 11.53 MB
Format: PDF, ePub, Docs
View: 48

This book grew out of lecture notes for an undergraduate course in plasma physics that has been offered for a number of years at UCLA. With the current increase in interest in controlled fusion and the wide spread use of plasma physics in space research and relativistic as trophysics, it makes sense for the study of plasmas to become a part of an undergraduate student's basic experience, along with subjects like thermodynamics or quantum mechanics. Although the primary purpose of this book was to fulfill a need for a text that seniors or juniors can really understand, I hope it can also serve as a painless way for scientists in other fields-solid state or laser physics, for instance to become acquainted with plasmas. Two guiding principles were followed: Do not leave algebraic steps as an exercise for the reader, and do not let the algebra obscure the physics. The extent to which these opposing aims could be met is largely due to the treatment of a plasma as two interpenetrating fluids. The two-fluid picture is both easier to understand and more accurate than the single-fluid approach, at least for low-density plasma phe nomena.

Lecture Notes On Principles Of Plasma Processing

Author: Francis F. Chen
Publisher: Springer Science & Business Media
ISBN: 0306474972
Size: 18.39 MB
Format: PDF
View: 85

Plasma processing of semiconductors is an interdisciplinary field requiring knowledge of both plasma physics and chemical engineering. The two authors are experts in each of these fields, and their collaboration results in the merging of these fields with a common terminology. Basic plasma concepts are introduced painlessly to those who have studied undergraduate electromagnetics but have had no previous exposure to plasmas. Unnecessarily detailed derivations are omitted; yet the reader is led to understand in some depth those concepts, such as the structure of sheaths, that are important in the design and operation of plasma processing reactors. Physicists not accustomed to low-temperature plasmas are introduced to chemical kinetics, surface science, and molecular spectroscopy. The material has been condensed to suit a nine-week graduate course, but it is sufficient to bring the reader up to date on current problems such as copper interconnects, low-k and high-k dielectrics, and oxide damage. Students will appreciate the web-style layout with ample color illustrations opposite the text, with ample room for notes. This short book is ideal for new workers in the semiconductor industry who want to be brought up to speed with minimum effort. It is also suitable for Chemical Engineering students studying plasma processing of materials; Engineers, physicists, and technicians entering the semiconductor industry who want a quick overview of the use of plasmas in the industry.

Plasmaphysik

Author: Ulrich Stroth
Publisher: Springer-Verlag
ISBN: 9783834883261
Size: 15.69 MB
Format: PDF
View: 31

Ausgehend von den Grundlagen der Plasmaphysik spannt das Buch einen Bogen zwischen den verschiedenen Feldern der Wissenschaft sowie zwischen Experiment und Theorie. Es wurde der anschauliche Zugang des Experimentalphysikers gewählt, um die vielfältigen Phänomene der Plasmaphysik zur erklären, ohne dabei die mathematisch korrekte Beschreibung zu vernachlässigen. Die entwickelten Grundlagen finden Anwendung in Beispielen aus dem weiten Bereich der Plasmatechnologie bis zur Fusionsforschung, von Labor- zu extraterrestrischen Plasmen, wobei die Fusionsforschung ein Schwerpunkt bildet.