Introduction To Computational Earthquake Engineering

Author: Muneo Hori
Publisher: World Scientific Publishing Company
ISBN: 9781911299196
Size: 13.27 MB
Format: PDF, Mobi
View: 29

This book introduces new research topics in earthquake engineering through the application of computational mechanics and computer science. The topics covered discuss the evaluation of earthquake hazards such as strong ground motion and faulting through applying advanced numerical analysis methods, useful for estimating earthquake disasters. These methods, based on recent progress in solid continuum mechanics and computational mechanics, are summarized comprehensively for graduate students and researchers in earthquake engineering. The coverage includes stochastic modeling as well as several advanced computational earthquake engineering topics. Contents:Preliminaries:Solid Continuum MechanicsFinite Element MethodStochastic ModelingStrong Ground Motion:The Wave Equation for SolidsAnalysis of Strong Ground MotionSimulation of Strong Ground MotionFaulting:Elasto-Plasticity and Fracture MechanicsAnalysis of FaultingSimulation of FaultingBEM Simulation of FaultingAdvanced Topics:Integrated Earthquake SimulationUnified Visualization of Earthquake SimulationStandardization of Earthquake Resistant DesignAppendices:Earthquake MechanismsAnalytical MechanicsNumerical Techniques of Solving Wave EquationUnified Modeling Language Readership: Graduate students and researchers in earthquake engineering; researchers in computational mechanics and computer science.

Computational Methods In Earthquake Engineering

Author: Manolis Papadrakakis
Publisher: Springer Science & Business Media
ISBN: 9789400765733
Size: 10.61 MB
Format: PDF, ePub, Mobi
View: 90

This book provides an insight on advanced methods and concepts for the design and analysis of structures against earthquake loading. This second volume is a collection of 28 chapters written by leading experts in the field of structural analysis and earthquake engineering. Emphasis is given on current state-of-the-art methods and concepts in computing methods and their application in engineering practice. The book content is suitable for both practicing engineers and academics, covering a wide variety of topics in an effort to assist the timely dissemination of research findings for the mitigation of seismic risk. Due to the devastating socioeconomic consequences of seismic events, the topic is of great scientific interest and is expected to be of valuable help to scientists and engineers. The chapters of this volume are extended versions of selected papers presented at the COMPDYN 2011 conference, held in the island of Corfu, Greece, under the auspices of the European Community on Computational Methods in Applied Sciences (ECCOMAS).

Computational Structural Dynamics And Earthquake Engineering

Author: Manolis Papadrakakis
Publisher: CRC Press
ISBN: 020388163X
Size: 16.79 MB
Format: PDF, Kindle
View: 36

The increasing necessity to solve complex problems in Structural Dynamics and Earthquake Engineering requires the development of new ideas, innovative methods and numerical tools for providing accurate numerical solutions in affordable computing times. This book presents the latest scientific developments in Computational Dynamics, Stochastic Dynamics, Structural Dynamics and Earthquake Engineering in thirty-five self-contained contributions. The selected state-of-the-art chapters are revised and extended versions of the papers which were presented as plenary, semi-plenary and keynote lectures at the thematic COMPDYN 2007 Conference. This volume will benefit researchers and engineering professionals working on structural dynamics, earthquake engineering and computational mechanics. Readers will get acquainted with advanced computational methods and software tools, which can assist them in tackling complex problems in dynamic/seismic analysis and design. Moreover, it will raise the awareness of important application areas and the social impact of the scientific and technical fields involved.

Computational Methods In Earthquake Engineering

Author: Manolis Papadrakakis
Publisher: Springer Science & Business Media
ISBN: 9400700539
Size: 17.49 MB
Format: PDF, Mobi
View: 38

This book provides an insight in advanced methods and concepts for structural analysis and design against seismic loading. The book consists of 25 chapters dealing with a wide range of timely issues in contemporary Earthquake Engineering. In brief, the topics covered are: collapse assessment, record selection, effect of soil conditions, problems in seismic design, protection of monuments, earth dam structures and liquid containers, numerical methods, lifetime assessment, post-earthquake measures. A common ground of understanding is provided between the communities of Earth Sciences and Computational Mechanics towards mitigating seismic risk. The topic is of great social and scientific interest, due to the large number of scientists and practicing engineers currently working in the field and due to the great social and economic consequences of earthquakes.

Introduction To Earthquake Engineering

Author: Hector Estrada
Publisher: CRC Press
ISBN: 1498758266
Size: 19.54 MB
Format: PDF, ePub
View: 40

This book is intended primarily as a textbook for students studying structural engineering. It covers three main areas in the analysis and design of structural systems subjected to seismic loading: basic seismology, basic structural dynamics, and code-based calculations used to determine seismic loads from an equivalent static method and a dynamics-based method. It provides students with the skills to determine seismic effects on structural systems, and is unique in that it combines the fundamentals of structural dynamics with the latest code specifications. Each chapter contains electronic resources: image galleries, PowerPoint presentations, a solutions manual, etc.

Intelligent Computational Paradigms In Earthquake Engineering

Author: Nikos D. Lagaros
Publisher: IGI Global
ISBN: 9781599041018
Size: 16.32 MB
Format: PDF
View: 60

"This book contains contributions that cover a wide spectrum of very important real-world engineering problems, and explores the implementation of neural networks for the representation of structural responses in earthquake engineering. It assesses the efficiency of seismic design procedures and describes the latest findings in intelligent optimal control systems and their applications in structural engineering"--Provided by publisher.