Fundamentals Of Computational Neuroscience

Author: Thomas Trappenberg
Publisher: Oxford University Press
ISBN: 9780199568413
Size: 20.13 MB
Format: PDF, ePub
View: 40

The new edition of Fundamentals of Computational Neuroscience build on the success and strengths of the first edition. It introduces the theoretical foundations of neuroscience with a focus on the nature of information processing in the brain. The book covers the introduction and motivation of simplified models of neurons that are suitable for exploring information processing in large brain-like networks. Additionally, it introduces several fundamental networkarchitectures and discusses their relevance for information processing in the brain, giving some examples of models of higher-order cognitive functions to demonstrate the advanced insight that can begained with such studies.

Fundamentals Of Computational Neuroscience

Author: Thomas Trappenberg
Publisher: OUP Oxford
ISBN: 9780191015731
Size: 20.78 MB
Format: PDF, ePub, Mobi
View: 16

Computational neuroscience is the theoretical study of the brain to uncover the principles and mechanisms that guide the development, organization, information processing, and mental functions of the nervous system. Although not a new area, it is only recently that enough knowledge has been gathered to establish computational neuroscience as a scientific discipline in its own right. Given the complexity of the field, and its increasing importance in progressing our understanding of how the brain works, there has long been a need for an introductory text on what is often assumed to be an impenetrable topic. The new edition of Fundamentals of Computational Neuroscience build on the success and strengths of the first edition. It introduces the theoretical foundations of neuroscience with a focus on the nature of information processing in the brain. The book covers the introduction and motivation of simplified models of neurons that are suitable for exploring information processing in large brain-like networks. Additionally, it introduces several fundamental network architectures and discusses their relevance for information processing in the brain, giving some examples of models of higher-order cognitive functions to demonstrate the advanced insight that can be gained with such studies. Each chapter starts by introducing its topic with experimental facts and conceptual questions related to the study of brain function. An additional feature is the inclusion of simple Matlab programs that can be used to explore many of the mechanisms explained in the book. An accompanying webpage includes programs for download. The book will be the essential text for anyone in the brain sciences who wants to get to grips with this topic.

Fundamentals Of Computational Neuroscience

Author: Thomas Trappenberg
Publisher: OUP Oxford
ISBN: 9780191029448
Size: 13.30 MB
Format: PDF, Kindle
View: 98

Computational neuroscience is the theoretical study of the brain to uncover the principles and mechanisms that guide the development, organization, information processing, and mental functions of the nervous system. Although not a new area, it is only recently that enough knowledge has been gathered to establish computational neuroscience as a scientific discipline in its own right. Given the complexity of the field, and its increasing importance in progressing our understanding of how the brain works, there has long been a need for an introductory text on what is often assumed to be an impenetrable topic. The new edition of Fundamentals of Computational Neuroscience build on the success and strengths of the first edition. It introduces the theoretical foundations of neuroscience with a focus on the nature of information processing in the brain. The book covers the introduction and motivation of simplified models of neurons that are suitable for exploring information processing in large brain-like networks. Additionally, it introduces several fundamental network architectures and discusses their relevance for information processing in the brain, giving some examples of models of higher-order cognitive functions to demonstrate the advanced insight that can be gained with such studies. Each chapter starts by introducing its topic with experimental facts and conceptual questions related to the study of brain function. An additional feature is the inclusion of simple Matlab programs that can be used to explore many of the mechanisms explained in the book. An accompanying webpage includes programs for download. The book will be the essential text for anyone in the brain sciences who wants to get to grips with this topic.

Computational Neuroscience

Author: Hanspeter Mallot
Publisher: Springer Science & Business Media
ISBN: 9783319008615
Size: 11.54 MB
Format: PDF, Kindle
View: 86

Computational Neuroscience - A First Course provides an essential introduction to computational neuroscience and equips readers with a fundamental understanding of modeling the nervous system at the membrane, cellular, and network level. The book, which grew out of a lecture series held regularly for more than ten years to graduate students in neuroscience with backgrounds in biology, psychology and medicine, takes its readers on a journey through three fundamental domains of computational neuroscience: membrane biophysics, systems theory and artificial neural networks. The required mathematical concepts are kept as intuitive and simple as possible throughout the book, making it fully accessible to readers who are less familiar with mathematics. Overall, Computational Neuroscience - A First Course represents an essential reference guide for all neuroscientists who use computational methods in their daily work, as well as for any theoretical scientist approaching the field of computational neuroscience.

Principles Of Computational Modelling In Neuroscience

Author: David Sterratt
Publisher: Cambridge University Press
ISBN: 9781139500791
Size: 19.56 MB
Format: PDF
View: 20

The nervous system is made up of a large number of interacting elements. To understand how such a complex system functions requires the construction and analysis of computational models at many different levels. This book provides a step-by-step account of how to model the neuron and neural circuitry to understand the nervous system at all levels, from ion channels to networks. Starting with a simple model of the neuron as an electrical circuit, gradually more details are added to include the effects of neuronal morphology, synapses, ion channels and intracellular signalling. The principle of abstraction is explained through chapters on simplifying models, and how simplified models can be used in networks. This theme is continued in a final chapter on modelling the development of the nervous system. Requiring an elementary background in neuroscience and some high school mathematics, this textbook is an ideal basis for a course on computational neuroscience.

Fundamentals Of Brain Network Analysis

Author: Alex Fornito
Publisher: Academic Press
ISBN: 9780124081185
Size: 18.60 MB
Format: PDF, Kindle
View: 45

Fundamentals of Brain Network Analysis is a comprehensive and accessible introduction to methods for unraveling the extraordinary complexity of neuronal connectivity. From the perspective of graph theory and network science, this book introduces, motivates and explains techniques for modeling brain networks as graphs of nodes connected by edges, and covers a diverse array of measures for quantifying their topological and spatial organization. It builds intuition for key concepts and methods by illustrating how they can be practically applied in diverse areas of neuroscience, ranging from the analysis of synaptic networks in the nematode worm to the characterization of large-scale human brain networks constructed with magnetic resonance imaging. This text is ideally suited to neuroscientists wanting to develop expertise in the rapidly developing field of neural connectomics, and to physical and computational scientists wanting to understand how these quantitative methods can be used to understand brain organization. Extensively illustrated throughout by graphical representations of key mathematical concepts and their practical applications to analyses of nervous systems Comprehensively covers graph theoretical analyses of structural and functional brain networks, from microscopic to macroscopic scales, using examples based on a wide variety of experimental methods in neuroscience Designed to inform and empower scientists at all levels of experience, and from any specialist background, wanting to use modern methods of network science to understand the organization of the brain