A Basic Course In Probability Theory

Author: Rabi Bhattacharya
Publisher: Springer
ISBN: 9783319479743
Size: 16.18 MB
Format: PDF, ePub, Docs
View: 26

This text develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. In this second edition, the text has been reorganized for didactic purposes, new exercises have been added and basic theory has been expanded. General Markov dependent sequences and their convergence to equilibrium is the subject of an entirely new chapter. The introduction of conditional expectation and conditional probability very early in the text maintains the pedagogic innovation of the first edition; conditional expectation is illustrated in detail in the context of an expanded treatment of martingales, the Markov property, and the strong Markov property. Weak convergence of probabilities on metric spaces and Brownian motion are two topics to highlight. A selection of large deviation and/or concentration inequalities ranging from those of Chebyshev, Cramer–Chernoff, Bahadur–Rao, to Hoeffding have been added, with illustrative comparisons of their use in practice. This also includes a treatment of the Berry–Esseen error estimate in the central limit theorem. The authors assume mathematical maturity at a graduate level; otherwise the book is suitable for students with varying levels of background in analysis and measure theory. For the reader who needs refreshers, theorems from analysis and measure theory used in the main text are provided in comprehensive appendices, along with their proofs, for ease of reference. Rabi Bhattacharya is Professor of Mathematics at the University of Arizona. Edward Waymire is Professor of Mathematics at Oregon State University. Both authors have co-authored numerous books, including a series of four upcoming graduate textbooks in stochastic processes with applications.

A Basic Course In Probability Theory

Author: Rabi Bhattacharya
Publisher: Springer
ISBN: 9783319479743
Size: 15.73 MB
Format: PDF, Kindle
View: 70

This text develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. In this second edition, the text has been reorganized for didactic purposes, new exercises have been added and basic theory has been expanded. General Markov dependent sequences and their convergence to equilibrium is the subject of an entirely new chapter. The introduction of conditional expectation and conditional probability very early in the text maintains the pedagogic innovation of the first edition; conditional expectation is illustrated in detail in the context of an expanded treatment of martingales, the Markov property, and the strong Markov property. Weak convergence of probabilities on metric spaces and Brownian motion are two topics to highlight. A selection of large deviation and/or concentration inequalities ranging from those of Chebyshev, Cramer–Chernoff, Bahadur–Rao, to Hoeffding have been added, with illustrative comparisons of their use in practice. This also includes a treatment of the Berry–Esseen error estimate in the central limit theorem. The authors assume mathematical maturity at a graduate level; otherwise the book is suitable for students with varying levels of background in analysis and measure theory. For the reader who needs refreshers, theorems from analysis and measure theory used in the main text are provided in comprehensive appendices, along with their proofs, for ease of reference. Rabi Bhattacharya is Professor of Mathematics at the University of Arizona. Edward Waymire is Professor of Mathematics at Oregon State University. Both authors have co-authored numerous books, including a series of four upcoming graduate textbooks in stochastic processes with applications.

Probability Theory

Author: Vivek S. Borkar
Publisher: Springer Science & Business Media
ISBN: 9781461207917
Size: 17.32 MB
Format: PDF, Docs
View: 37

This book presents a selection of topics from probability theory. Essentially, the topics chosen are those that are likely to be the most useful to someone planning to pursue research in the modern theory of stochastic processes. The prospective reader is assumed to have good mathematical maturity. In particular, he should have prior exposure to basic probability theory at the level of, say, K.L. Chung's 'Elementary probability theory with stochastic processes' (Springer-Verlag, 1974) and real and functional analysis at the level of Royden's 'Real analysis' (Macmillan, 1968). The first chapter is a rapid overview of the basics. Each subsequent chapter deals with a separate topic in detail. There is clearly some selection involved and therefore many omissions, but that cannot be helped in a book of this size. The style is deliberately terse to enforce active learning. Thus several tidbits of deduction are left to the reader as labelled exercises in the main text of each chapter. In addition, there are supplementary exercises at the end. In the preface to his classic text on probability ('Probability', Addison Wesley, 1968), Leo Breiman speaks of the right and left hands of probability.

Basic Probability Theory

Author: Robert B. Ash
Publisher: Courier Corporation
ISBN: 9780486466286
Size: 18.55 MB
Format: PDF
View: 16

This introduction to more advanced courses in probability and real analysis emphasizes the probabilistic way of thinking, rather than measure-theoretic concepts. Geared toward advanced undergraduates and graduate students, its sole prerequisite is calculus. Taking statistics as its major field of application, the text opens with a review of basic concepts, advancing to surveys of random variables, the properties of expectation, conditional probability and expectation, and characteristic functions. Subsequent topics include infinite sequences of random variables, Markov chains, and an introduction to statistics. Complete solutions to some of the problems appear at the end of the book.

Understanding Probability

Author: Henk Tijms
Publisher: Cambridge University Press
ISBN: 9781139511070
Size: 16.43 MB
Format: PDF, Mobi
View: 55

Understanding Probability is a unique and stimulating approach to a first course in probability. The first part of the book demystifies probability and uses many wonderful probability applications from everyday life to help the reader develop a feel for probabilities. The second part, covering a wide range of topics, teaches clearly and simply the basics of probability. This fully revised third edition has been packed with even more exercises and examples and it includes new sections on Bayesian inference, Markov chain Monte-Carlo simulation, hitting probabilities in random walks and Brownian motion, and a new chapter on continuous-time Markov chains with applications. Here you will find all the material taught in an introductory probability course. The first part of the book, with its easy-going style, can be read by anybody with a reasonable background in high school mathematics. The second part of the book requires a basic course in calculus.